
Analyzing Real-Time Scheduling of Cyber-Physical
Resilience

Björn Andersson
Carnegie Mellon University

Dionisio de Niz
Carnegie Mellon University

Sagar Chaki
Mentor Graphics

Abstract—Cyber-Physical Systems (CPS) involve software exe-
cuting on a computer that interacts with its physical environment.
Common steps in the design and analysis of such systems are:
model the physical environment, develop software to interact
with this physical environment, specify timing requirements of
software, configure the software (e.g., assign priorities), and then
analyze the timing requirements for a given configuration. This
approach works but tends to have low resilience to disruption.
With the pervasive use of CPS, there is an increasing need to
develop timing analysis methods that achieve increased resilience
by modeling the linkage between the execution of software and
the physical environment. In this paper, we present a new model
that describes the current state of the physical environment in
terms of how tolerant it is to disruption of the software system;
we call this model Cyber-Physical Resilience (CPR). We present an
exact schedulability test for this model and implement a tool that
performs this schedulability test. We evaluate it on randomly-
generated tasksets and on a model of a multi-UAV system from
[1].

I. INTRODUCTION

Cyber-Physical Systems (CPS) involve software executing
on a computer that interacts with its physical environment.
Common steps [15] in the design and analysis of such sys-
tems are: model the physical environment, develop software
to interact with this physical environment, specify timing
requirements of software, configure the software (e.g., assign
priorities), and then analyze the timing requirements for a
given configuration. This approach works but tends to have low
resilience to disruption. With the pervasive use of CPS, there
is an increasing need to develop timing analysis methods that
achieve increased resilience by modeling the linkage between
the execution of software and the physical environment.

The research community has (i) explored ideas on how
scheduling and task set parameters impacts performance met-
rics of the physical world (e.g., control performance) [13],
[10], (ii) developed new ways of scheduling that is suited for
the performance of the physical world, [8], [7], [4], [3], [16],
[2], [11], [17], (iii) developed software architectures and run-
time systems that allow unverified controllers to be used in
safety-critical systems [6], [14], and (iv) developed scheduling
with skips [5], [9]. But there has not been much focus on
resilience. From the perspective of resilience, the ideas in [12]
are particularly interesting—for this reason, we describe then
now.

Figure 1 shows notions in [12]. Consider a plant. Let φ be
a correctness property of the plant (e.g., a UAV stays within
a safe geographic region). We represent φ as a set of states

𝐶𝜙

𝜙

𝐶𝜙
2

𝐶𝜙
1

Fig. 1. Sets of states of the physical plant/environment.

of the plant where this correctness property is true. There is
also a computer system that periodically senses and performs
actions on the plant. For a given pair of state and action there
is a set of possible successor states.

Note that the state refers to the state of the plant—not the
state of the computer system. Let Cφ be a subset of φ such
that for each state in Cφ there is an action such that the set
of possible successor states is a subset of Cφ.

Let a null action be an action such that the software does
nothing. The interpretation of a null action is application
specific and in particular, it depends on the actuator. For
example, an actuator may be designed so that if it receives no
new command, then it re-applies the command produced by
the software in the previous period. Alternatively, an actuator
may have an internal timeout so that if it has not received a
new command from the software within a given timeout, then
it actuates a specific command. For example, if a motor has
not received any new command within a given timeout, then
it may disengage. Let Ckφ (for k ≥ 1) denote the set of states
such that for each state in Ckφ , it holds that if k null actions
are taken, then each possible successor state is in Cφ. Thus,
both C2

φ and C1
φ are sets of safe states but C2

φ is more resilient
in the sense that it can tolerate more null actions without the
plant reaching an unsafe state.

Unfortunately, Lucia et al. [12] studied a system with a
single physical environment and a single task. We believe it
is desirable to have a model describing multitasking in a way
that extends the ideas in [12] and also create a corresponding
schedulability test.

Therefore, in this paper, we present a new task model
inspired by the ideas in [12] but we focus on real-time
tasks, enforcement, interaction with physical environment, and
schedulability analysis. Our model describes the relationship
between the timing behavior and the physical resilience of
the system; hence we name it the Cyber-Physical Resilience

(CPR) model. For this model, we present an exact schedu-
lability analysis. The main idea of our schedulability test
is as follows: (i) identify necessary conditions for a failure,
(ii) formulate a Satisfiability Modulo Theories (SMT) instance
such that if the necessary condition of failure is true then the
SMT instance is satisfiable, (iii) by taking the contrapositive
of the previous condition, obtain that if the SMT instance is
unsatisfiable then the taskset is schedulable (this is our new
schedulability test), and (iv) prove that our new schedulability
test is exact. We also implement a tool that performs this
schedulability test. We evaluate it on randomly-generated
tasksets and on a model of a multi-UAV system from [1].

We consider this research to be significant because it allows
the real-time systems community to develop new results on
real-time scheduling that considers the interaction between
the software and its physical environment—yet do so with an
application-independent abstraction rather than specific types
of differential equations of the physical world.

The remainder of this paper is structured as follows. Sec-
tion II gives a background on the model in [12] and our
observations. Section III formally presents our system model.
Section IV presents our new schedulability analysis. Section V
presents a tool that performs the schedulability analysis and
presents evaluation. Section VI concludes the paper.

II. PHYSICAL INTERACTION

Lucia et al. [12] studied control of such a system where the
computer can suffer from a Denial-of-Service attack, and it is
desired to ensure that the system is still in a safe state after
that. Recall that Figure 1 shows notions that they used.

We will now describe how to use this idea to create a model
for the real-time scheduling of the resilience of this type of
systems. We will describe a system where the software consists
of a set of tasks where each task generates a sequence of jobs.
We assume that tasks operate on different plants, that is, task τi
is associated with a plant i with the correctness property φi. A
counter is associated with each task; if the counter associated
with task τi is equal to k, then it means that plant i is in a
state in Ckφi . A job can be skipped and then it outputs a null
action. If a job is skipped, the counter of the corresponding
task is decremented. If a job is not skipped it can happen that
the job finishes with some margin before its deadline issuing
a normal controller action; then the counter is incremented.
If the job is not skipped and the job does not finish with
some margin before its deadline, then within some margin
before the deadline, the job is killed and an enforcer arrives;
if the enforcer finishes before the deadline issuing an enforcer
action, then the counter is unchanged. If the enforcer has not
yet finished at its deadline, then the enforcer is killed (and a
null action is output) and the counter is decremented.

We assume that each task is assigned a priority and
fixed-priority preemptive scheduling is used. We assume that
whether a job is skipped cannot be controlled by the scheduler
but we have rules that bound this behavior.

We are interested in having very few assumptions on
knowledge of execution times while still being able to provide

pre-run-time guarantees that at each instant, for each task, the
counter of the task at this instant is non-negative. For this
purpose, we can stipulate that if a job is of the type respectC
(intuitively respect execution time), then the execution time
is at most a given parameter; if the job is of the type
not-respectC then execution time may be greater than this
parameter. Clearly, if all jobs are not-respectC, then it is
impossible to provide pre-run-time guarantees. Therefore, we
also stipulate bounds on how many jobs can be not-respectC.

Typically, it is desired not only to maintain the plant in a
safe state but also to achieve other objectives (for example, a
UAV should stay within a geographical area but it should also
follow waypoints). Hence, there are cases (where the plant
is not close to the border of the set of safe states), when a
successful action (a job finishing with some margin before its
deadline) should not increment the counter of the task. We can
model this by introducing a parameter per task and when the
counter of a task has reached this parameter, then the counter
is not permitted to be incremented further.

Our goal is to (i) formulate a task model based on the
above ideas, (ii) present an exact schedulability test for this
task model, and (iii) evaluate the new schedulability test.

III. SYSTEM MODEL

Subsection III-A states notations that we will use. Subsec-
tion III-B states taskset parameters. Subsection III-C presents
run-time behavior; it explains the meaning of taskset parame-
ters. Subsection III-D defines the notion schedulable.

A. Notation

Throughout this article, we use the following notation and
abbreviations. “with respect to” is written as wrt. “left-hand
side” is written as lhs. “right-hand side” is written as rhs. 〈a, b〉
is a tuple with two elements a and b. [a, b] is an interval of
real numbers. {a..b} is the set of integers ≥ a and ≤ b.

We use dot to mean it holds that; for example, when we
write ∀x Q(x). P (x) we mean forall x such that Q(x) is true,
it holds that P (x) is true. In some cases, when Q is a set, we
write ∀x ∈ Q. P (x) we mean forall x such that x is in the
set Q, it holds that P (x) is true. We will frequently use the
above notations on tuples, for example when we write ∀〈j, q〉
Q(j, q). P (j, q) we mean forall tuples 〈j, q〉 such that Q(j, q)
is true, it holds that P (j, q) is true. We will assume that logical
conjunction can be performed over a set of variables; if the set
is empty, then the result is true. Ditto for logical disjunction.

In figures that show schedules, an arrow pointing upwards
indicates the arrival of a job, an arrow pointing downwards
indicates the absolute deadline of a job, and a solid vertical
line will be used to indicate a time when the run-time system
releases an enforcement execution (if needed) for a job. When
we say increment without specifying the amount, it is assumed
to mean increment by one. Ditto for decrement.

B. Static parameters

Table I shows an example of a system in our model. We
consider a taskset τ and a single processor. Each task τi ∈ τ

|τ | = 2
prio1 = 2 T1 = 1.0 D1 = 0.8 Z1 = 0.64 C1 = 0.50 E1 = 0.10 MAXCOUNT1 = 4 RC1 = 1
prio2 = 1 T2 = 2.2 D2 = 1.7 Z2 = 1.40 C2 = 0.61 E2 = 0.25 MAXCOUNT2 = 1 RC2 = 1

TABLE I
AN EXAMPLE OF A SYSTEM IN OUR MODEL.

Processor

0 1 time

τ1 τ1 τ1 τ1 τ1τ2 τ2τ2 τ2τ2

2 3 4 5

τ1

τ2

counter of τ1

counter of τ2

1

1

2 3 4 4 4 3

0 0

Fig. 2. Illustration of a schedule that the system can generate. τ1 has the
highest priority; hence, a job of τ1 executes immediately when it arrives.
It can be seen that for each of the first five jobs of τ1, the finishing time
is at most Z1 after its arrival. Because of this early finishing, for each of
the first three jobs of τ1, the counter of τ1 is incremented. For the 4th and
5th job of τ1, it holds that the job also has early finishing time but since
the counter has already become 4 and MAXCOUNT1 = 4, it follows that
the counter is not incremented further. The 6th job of τ1 arrives at time 5;
this job is skipped and hence the counter of τ1 is decremented. As a result,
the counter of τ1 becomes 3 at time 5. Note that in this schedule, it never
happens that a job of τ1 is eligible Z1 time units after its arrival; hence, jobs
of τ1 never perform enforcement execution. τ2 has lower priority; hence a
job of τ2 can only execute when a job of τ1 is not executing. For the 1st

job of τ2, it holds that it has not yet finished Z2 time units after its arrival;
hence this job is killed and its enforcement execution is released (at time 1.4).
Note that this job cannot execute immediately after time 1.4 because of the
higher priority task. Therefore, this job has to wait until time 1.5 and then
it performs enforcement execution during [1.5,1.7]. At time 1.7, the deadline
of the 1st job of τ2 expires and hence this job is killed and as a result,
the counter of τ2 is decremented. The 2nd job of τ2 has similar behavior
but since its enforcement execution experiences less interference, it finishes
before the deadline and hence the counter of τ2 is not changed.

is characterized by prioi, Ti, Di, Zi, Ci, Ei, MAXCOUNTi,
and RCi such that (Ti ≥ Di > Zi ≥ Ci ≥ 0) ∧ (Zi >
0)∧ (Di−Zi ≥ Ei ≥ 0)∧ (MAXCOUNTi ∈ N≥1)∧ (RCi ∈
N≥1). The interpretation is as follows. A task τi is assigned
priority prioi. A task τi generates a sequence of jobs where
two consecutive jobs of τi have arrival times separated by at
least Ti time units and each job of τi has relative deadline Di.
If a job of τi is a respectC job, then Ci is an upper bound on the
execution time of this job performed in the time interval from
its arrival until Zi time units after its arrival. For a job of τi,
regardless of whether it is a respectC job, it holds that Ei is an
upper bound on the execution time of this job performed in the
time interval from Zi time units after its arrival until Di time
units after its arrival. MAXCOUNTi is the largest value that
the counter of task τi may take at run-time. RCi specifies that
we assume it cannot happen that RCi consecutive jobs of τi
are not-respectC. We assume that priorities of tasks are unique,
that is, ((i 6= j)∧ (τi ∈ τ)∧ (τj ∈ τ))⇒ (prioi 6= prioj). For
convenience, we let hp(i) denote the set of indices of tasks
with higher priority than task τi and hep(i) = hp(i) ∪ {i}.

C. Run-time behavior

Figure 2 shows a schedule that the taskset specified by
Table I can generate. τi,q denotes the qth job of task τi. The
priority of a τi,q is equal to prioi. A job can be a skipped job
or not; if it is skipped, then there is a time at which it gets
skipped. (For example, a job may be skipped when it arrives
because the operating system decided this. Alternatively, the
application software may decide that a job should be skipped
and this type of skip will happen after the job has arrived.)
A job can be respectC job or not. We say that a job of
task τi Zexpires at time Zi plus the arrival time of the job.
Analogously, we also say that a job of task τi Dexpires at time
Di plus the arrival time of the job. For a job τi,q , the normal
mode of the job is the time interval from its arrival until it
Zexpires. For a job τi,q , the enforcement mode of the job is
the time interval from when it Zexpires until it Dexpires. A job
performs normal execution in its normal mode. A job performs
enforcement execution in its enforcement mode. The following
rules (for evolution of counters, whether a job is eligible, and
how a job is selected for execution) apply at run-time:

1) When the system starts, the counter of τi is initialized to
some non-negative value. The choice in this value may
be done non-deterministically when the system starts.

2) If a job τi,q is skipped, then it must have been that the
counter of τi was positive just before that.

3) When a job arrives, if it is not skipped when it arrives,
it becomes eligible.

4) When a job arrives, if it is skipped when it arrives, it is
set to non-eligible.

5) If RCi = 1, then each job of τi is a respectC job.
6) If RCi ≥ 2 and at least RCi − 1 jobs of τi have arrived

and τi,q is a new job arriving, and all RCi − 1 most-
recent preceding jobs of τi are not-respectC job, then
τi,q is a respectC job.

7) If for τi,q , the job is in its normal mode and the job
is skipped, then it finishes, it becomes non-eligible, and
the counter of τi is decremented. (A job can only be
skipped in its normal mode.)

8) If for τi,q , the job is in its normal mode and it is not
skipped and the job has performed Ci units of normal
execution, then the job finishes (note that a job can finish
even if it performs less) and it becomes not-eligible.

9) If for τi,q , the job finishes in its normal mode and
it is not skipped and the counter of the τi is at
most MAXCOUNTi − 1, then the counter of τi is
incremented. (Note that if the counter of τi equals
MAXCOUNTi, then the counter is unchanged; hence,
the counter cannot exceed MAXCOUNTi.)

10) When a job Zexpires, it leaves its normal mode and

enters its enforcement mode.
11) If for τi,q , the job is in its enforcement mode and the

job has performed Ei units of enforcement execution,
then the job finishes (note that a job can finish even if
it performs less; also note that a job cannot be skipped
in its enforcement mode) and it becomes not-eligible.

12) For τi,q , if the job finishes in its enforcement mode, then
the counter of τi does not change.

13) For τi,q , when the job Dexpires, it finishes (here we say
it is killed) and it becomes not-eligible and the counter
of τi is decremented.

14) A job executes if and only if the job is eligible and there
is no higher-priority job that is eligible at that time.

D. Schedulable

Informally, a taskset is schedulable if for all possible sched-
ules that the taskset can generate, it holds that at each instant,
for each task, the counter of the task at this instant is non-
negative. Thus, we start by defining terminology for defining
possible schedules.

Let R be an assignment, for each task, the number of jobs
it generates and for each job, its arrival time and execution
time in normal mode and in enforcement, whether it is a
skip-job and the time when it becomes a skip job (only
used if it is a skip job) and respectC. nji(R) denotes the
number of jobs generated by τi for assignment R. Let Ai,q(R)
be the arrival time of τi,q for assignment R. Let ci,q(R)
be the execution requirement of τi,q in normal mode for
assignment R. Let ei,q(R) be the execution requirement of
τi,q in enforcement mode for assignment R. Let skipi,q(R) be
a Boolean indicating whether τi,q is a skip-job for assignment
R. Let skipti,q(R) be a real number indicating the time
when τi,q becomes a skip-job (only used if it is a skip job)
for assignment R. Let respCi,q(R) be a Boolean indicating
whether τi,q is respectC for assignment R. Let leg(R, τ) mean
legal assignment. Formally:

leg(R, τ) =
(
∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {2..nji(R)}) Ai,q(R) − Ai,q−1(R) ≥ Ti

)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)}) (ci,q(R) ≥ 0) ∧ (respCi,q(R) ⇒ (ci,q(R) ≤ Ci))
)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)}) ei,q(R) ∈ [0, Ei]
)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)}) skipti,q(R) ∈ [Ai,q(R), Ai,q(R) + Zi]
)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R) − (RCi − 1)}) ∨
q′∈{q..q+RCi−1} respC

i,q′ (R)
)

Let ca be a counter assignment; that is, it is an assignment
for each task, for each time, the value of the counter of the
task at that time. Let legca(ca, R, sc, τ) mean that ca is legal
counter assignment related to the assignment R, schedule sc,
τ ; it means that the counter assignment respects the increment
and decrement rules specifies in the Subsection III-C.

If R is an assignment, ca is a counter assignment, and sc
is a schedule, then when we say that 〈R, ca, sc〉 is legal wrt
τ , we mean that all three conditions below are true:

1) R is legal wrt to τ .
2) ca is legal wrt R, sc, and τ .
3) sc can be generated from R.
We say that τ is schedulable if and only if for each lega

l〈R, ca, sc〉, it holds that for each task τi ∈ τ , at all times, the
counter of τi is non-negative.

A schedulability test is a function that takes τ as input and
outputs a Boolean. For an exact schedulability test, it holds

that if and only if the schedulability test outputs true, then the
system is schedulable.

IV. NEW SCHEDULABILITY TEST

In this section, we present our new schedulability test
for the CPR model. Our plan is as follows. If a taskset
is unschedulable, then there is a schedule in which there
is a failure (i.e., a counter becomes negative). We reason
(in Section IV-A) about this failure and obtain the existence
of another schedule that the system can generate for which
there is also a failure. We represent (in Section IV-B) those
schedules with variables and constraints. Thus, if a taskset
is unschedulable, then this constraint satisfaction problem is
satisfiable. Then (in Section IV-C) we show that we have
obtained a necessary condition for an unschedulable taskset.
We take the contrapositive of this necessary condition and this
yields a sufficient condition for a taskset to be schedulable. We
then show that this condition is also exact. We also present
an algorithm to evaluate this condition; this yields our exact
schedulability test for the CPR model.

A. Reasoning about Failure

Consider an unschedulable taskset τ . From the definition of
schedulability, it follows that

There is an assignment R, a counter assignment ca,
a schedule sc, a task τiD, and an instant t0 such that
(i) R is legal wrt the taskset τ , (ii) ca is legal wrt
R, sc, and τ , (iii) sc can be generated by R and τ ,
and (iv) just before t0, the counter of τiD was 0 and
at t0, the counter of τiD becomes -1.

If there are multiple such t0, then choose the earliest one.
Hence, for each task, for each instant before t0, it holds that
at this instant the counter of this task is non-negative. We will
present transformations such that after each transformation,
the above conditions are true but in addition, there are other
conditions that are true as well. We will now perform a
transformation as specified by the following steps:

T1 For tasks of lower priority than τiD, set the number
of jobs to zero.

T2 Remove all jobs that arrive after t0.
T3 For each task, set the counter of this task as a

function of time to reflect the changes of steps T1
and T2.

Note that even after this change, it holds that at time t0, the
counter of τiD becomes -1. Recall that according to our system
model, there are two reasons why the counter of a task is
decremented: either because a job of this task is skipped or
because the job finishes too late. The former cannot happen
when the counter is zero (which is the case just before time t0).
Hence, at time t0, the counter of τiD is decremented because
a job of τiD finishes too late. We let qD denote the index of
this job of task τiD. In addition, recall from our system model
that if a job has not finished by its absolute deadline, then the
job is killed at its absolute deadline; thus τiD,qD is killed a
time t0. We will now perform a transformation as specified
by the following steps:

T4 For all jobs except τiD,qD, if the job performs some
enforcement execution at time t0 or later, then reduce
the enforcement execution time of the job; keep
doing this until it performs no enforcement execution
after t0.

T5 For all jobs except τiD,qD, if the job performs some
normal execution at time t0 or later, then reduce the
normal execution time of the job; keep doing this
until it performs no normal execution after t0.

T6 For each task, set the counter of this task as a
function of time to reflect the changes of steps T4-
T5.

Note that even after this change, it holds that at time t0, the
counter of τiD becomes -1. Hence, it holds that:

There is an assignment R, a counter assignment ca, a
schedule sc, a task τiD, an instant t0, and a positive
integer qD such that (i) R is legal wrt the taskset
τ , (ii) ca is legal wrt R, sc, and τ , (iii) sc can be
generated by R and τ , (iv) just before t0, the counter
of τiD was 0 and at t0, the counter of τiD becomes
-1, (v) for each task, for each instant before t0, it
holds that at that time, the counter of the task is non-
negative, (vi) for each task of lower priority than τiD
it holds that, the task generates no jobs, (vii) no jobs
arrive after t0, (viii) the number of jobs generated
by τiD is qD, (ix) τiD,qD is not a skipjob, (x) the
absolute deadline of τiD,qD is t0, (xi) the amount
of enforcement execution performed by τiD,qD upto
time t0 is strictly less than eiD,qD(R), (xii) τiD,qD
is killed at time t0, and (xiii) the processor is idle
at all times strictly after t0.

Let us consider two cases based on the initial value of the
counter of task τiD.

C1: When the system starts, the value of the counter of
task τiD is at least 1.
Since at time t0, it holds that the counter of τiD
changes from 0 to -1 and since the counter of τiD
started with at least 1, it holds that there are at least
two jobs of τiD for which the counter of τiD was
decreased. Hence qD ≥ 2. Let us define qD as the
smallest number such that after the absolute deadline
of τiD,qD′ until t0, the counter of task τiD does not
change. Formally,

qD
′
= min
q | the counter of τiD does not change during (AiD,q(R)+DiD,t0)

q

Note that since there are at least two jobs of
τiD for which the counter of τiD was decreased,
it follows that qD′ exists. We will now perform a
transformation as specified by the following steps:

T7 Set τiD,qD′ to be skipped; set the time when
this job is skipped to be the time when the
job arrives.

T8 Set τiD,qD′ to respectC.
T9 Remove all jobs τiD,q such that ((q 6=

qD′) ∧ (q 6= qD)).
T10 Set the counter of τiD as a function of time

to reflect the changes of steps T7-T9.

About the transformation, we note the following:

A The job τiD,1 after this transformation refers
to the same job as τiD,qD′ before the trans-
formation.

B The job τiD,2 after this transformation refers
to the same job as τiD,qD before the trans-
formation.

C After the transformation, at time t0, the
counter of τiD changes from 0 to -1.

D After the transformation, there are two jobs
of τiD.

E After the transformation, each of the two
jobs of τiD causes the counter of τiD to be
decremented.

F After the transformation, when the system
starts, the counter of τiD is 1 (this follows
from C. and E.).

G After the transformation, τiD,1 does not ex-
ecute (this follows from A and T7).

H After the transformation, τiD,1 is a respectC
job. (this follows from A and T8).

I If RCiD = 1, then before the transforma-
tion, each job of τiD is a respectC job.
(follows from the fact that R is legal).

J If RCiD = 1, then after the transformation,
τiD,2 is a respectC job. (follows from I and
B).

We will now show that after this transformation,
the assignment and schedule are still legal. Clearly,
this transformation does not change the arrival times,
execution times of tasks with index in hp(iD); also,
for these tasks, the times when they execute do
not change, their counters do not change, and their
respectC do not change (and hence RC constraints
are satisfied too). We will now show that this also
holds for the task τiD. Clearly, the execution time
and arrival time constraints for τiD are satisfied.
We will now show that the RC constraint for τiD
is satisfied after the change. Consider the case that
RCiD = 1. From H. and J., it follows that after the
transformation, both jobs of τiD are respectC jobs;
hence the RC constraint for τiD is satisfied. Consider
the case that RCiD ≥ 2. In order to prove that the
RC constraint of τiD is satisfied after the change,
it suffices to show that for each sequence of RCiD

jobs of τiD, it holds that at least one of these jobs
is a respectC job. Note (from H) that τiD,1 after the
transformation is a respectC job and hence each such
sequence has a respectC job. Thus, the RC constraint
of τiD is satisfied after the transformation. Hence, it
holds that:

There is an assignment R, a counter assignment
ca, a schedule sc, a task τiD, and an instant
t0 such that (i) R is legal wrt the taskset τ ,
(ii) ca is legal wrt R, sc, and τ , (iii) sc can

be generated by R and τ , (iv) just before t0,
the counter of τiD was 0 and at t0, the counter
of τiD becomes -1, (v) for each task, for each
instant before t0, it holds that at that time, the
counter of the task is non-negative, (vi) for each
task of lower priority than τiD it holds that, the
task generates no jobs, (vii) no jobs arrive after
t0, (viii) the number of jobs generated by τiD
is 2, (ix) τiD,2 is not a skipjob, (x) the abso-
lute deadline of τiD,2 is t0, (xi) the amount of
enforcement execution performed by τiD,2 upto
time t0 is strictly less than eiD,2(R), (xii) τiD,2
is killed at time t0, (xiii) the processor is idle
at all times strictly after t0, and (xiv) when the
system starts, the counter of τiD is 1.

Let t−1 denote the earliest time instant such that at
each instant during [t−1,t0], the processor is busy.
We will now discuss the arrival time of τiD,1 and
τiD,2. Let us define ∆ as AiD,2(R) − t−1. From
the definition of t−1 and from the fact that we
consider work-conserving scheduling, it follows that
∆ ≥ 0. We will now consider two cases and through
reasoning, we will show that after these cases, we
end up with AiD,2(R) = t−1.

C1a: ∆ = 0
Using the knowledge of the case (∆ =
0) and the definition of ∆ yields that
AiD,2(R) = t−1.

C1b: ∆ > 0
For this case, perform a transformation as
specified by the following steps:
T11 Decrement AiD,1(R) by ∆.
T12 Decrement AiD,2(R) by ∆.
T13 Set t0 to the absolute deadline of

τiD,2.
T14 Apply T4,T5,T6 so that there is no

execution after the time given by the
new value of t0.

T15 Set the counter of τiD as a function
of time to reflect the changes of steps
T11-T14.

Given that both jobs of τiD have their arrival
times decreased by the same amount and the
minimum inter-arrival time was respected
before the transformation, the minimum
inter-arrival time is still respected after the
transformation. Also, after the transforma-
tion, we obtain AiD,2(R) = t−1.

Hence, regardless of the case, we end up with
AiD,2(R) = t−1. Also, note that we end up with
that the absolute deadline of τiD,2 equals t0 (this can
be seen as follows: in Case 1a, this was true initially
and we did not change it; in Case 1b, this was true
initially and then we changed it—with T12—and
then T13 made sure it is true). We will now perform

a transformation as specified by the following steps:
T16 Remove the job τiD,1.
T17 Remove all jobs arriving before t−1.
T18 Left shift-the schedule by t−1 time units.
T19 For each task, set the counter of this task as

a function of time to reflect the changes of
steps T16-T18.

Note that after this transformation, we obtain that τiD
generates a single job that arrives at time 0; at that
time, the counter of τiD is zero; and DiD time units
later, the deadline of the single job of τiD expires at
time DiD. Hence, it holds that:

There is an assignment R, a counter assignment
ca, a schedule sc, and a task τiD such that (i) R
is legal wrt the taskset τ , (ii) ca is legal wrt R,
sc, and τ , (iii) sc can be generated by R and
τ , (iv) just before DiD, the counter of τiD was
0 and at DiD, the counter of τiD becomes -1,
(v) for each task, for each instant before DiD, it
holds that at that time, the counter of the task is
non-negative, (vi) for each task of lower priority
than τiD it holds that, the task generates no jobs,
(vii) no jobs arrive after DiD, (viii) the number
of jobs generated by τiD is 1, (ix) τiD,1 is not
a skipjob, (x) the absolute deadline of τiD,1 is
DiD, (xi) the amount of enforcement execution
performed by τiD,1 upto time DiD is strictly less
than eiD,1(R), (xii) τiD,1 is killed at time DiD,
(xiii) the processor is idle at all times strictly
after DiD, (xiv) when the system starts at time
zero, the counter of τiD is 0, (xv) τiD,1 arrives at
time zero, and (xvi) no job arrives before time
0. [End-of-Case-1]

C2: When the system starts, the value of the counter of
task τiD is 0.
If qD ≥ 2, then remove all jobs of τiD except τiD,qD.
Now we have a situation with a single job of τiD. Let
t−1 denote the earliest time such that the processor
is busy during [t−1, t0]. Then, remove all jobs that
arrive before t−1. And then left-shift the schedule by
t−1. This yields the same situation as in the end of
Case 1. [End-of-Case-2]

It can be seen that regardless of the case, we obtain that
the statement just before [End-of-Case-1] is true. Let us now
discuss skiptime of a job of a task in hp(iD)—recall that if a
job is skipped, then it is skipped at its skiptime; if the job is
not skipped, then its skiptime neither influences the schedule
nor the evolution of the counter. We will show that for each
job, we can set skiptime of a job τi,q to its arrival time or
finishing time. Given a job τi,q , consider three cases (i) τi,q
is skipped and its skiptime equals its arrival time, (ii) τi,q is
skipped and its skiptime is after its arrival time, (iii) τi,q is
not skipped. For case (i), we do nothing. For case (ii), we
know that there can be no execution of τi,q after its skiptime.
Hence, the finishing time of τi,q is at most its skiptime. We

can reduce the skiptime of τi,q until it reaches its finishing.
This does not change the schedule. For case (iii), we set its
skiptime to its arrival time. Since the job is not a skipjob,
the value of skiptime has no impact and hence this change of
skiptime does not have any impact on the schedule. It can be
seen that regardless of the case, we obtain that for a job, its
skiptime equals its arrival time or finishing time.

We will now discuss the counters. For each j ∈ hp(iD)
do the following (i) throughout the schedule, find the smallest
value of the counter for task τj and then (ii) throughout the
schedule, subtract the counter of τj by the number computed in
(i). Hence, we obtain that for each task with index j ∈ hp(iD),
there exists a time when the counter of the τj is zero and the
counter is never lower than 0. Also, it is easy to see that
for each task with index j, it holds that there are at most
dDiD/Tje jobs of task τj . Hence, for each task with index j,
during its schedule, it holds that at each instant, the counter
of task τj is at most dDiD/Tje. Also, from the system model,
for each task with index j, during its schedule, it holds that at
each instant, the counter of task τj is at most MAXCOUNTj .
Putting them together yields that for each task with index j,
during its schedule, it holds that at each instant, the counter
of task τj is at most min(dDiD/Tje,MAXCOUNTj). Thus:

There is an assignment R, a counter assignment ca,
a schedule sc, and a task τiD such that (i) R is legal
wrt the taskset τ , (ii) ca is legal wrt R, sc, and τ ,
(iii) sc can be generated by R and τ , (iv) just before
DiD, the counter of τiD was 0 and at DiD, the counter
of τiD becomes -1, (v) for each task, for each instant
before DiD, it holds that at that time, the counter of
the task is non-negative, (vi) for each task of lower
priority than τiD it holds that, the task generates no
jobs, (vii) no jobs arrive after DiD, (viii) the number of
jobs generated by τiD is 1, (ix) τiD,1 is not a skipjob,
(x) the absolute deadline of τiD,1 is DiD, (xi) the amount
of enforcement execution performed by τiD,1 upto time
DiD is strictly less than eiD,1(R), (xii) τiD,1 is killed
at time DiD, (xiii) the processor is idle at all times
strictly after DiD, (xiv) when the system starts at time
zero, the counter of τiD is 0, (xv) τiD,1 arrives at time
zero, (xvi) no job arrives before time 0, (xvii) for each
task with index in hp(iD), for each job of the task, the
skiptime of the job is its arrival time or its finishing
time, (xviii) for the job τiD,1, its skiptime equals its
arrival time, and (xix) for each task with index j, at
each instant, the counter of the task at this instant is at
most min(dDiD/Tje,MAXCOUNTj).

(0)

If we could find a simple function such that this function
takes parameters of the taskset as input and outputs a Boolean
such that (0) implies that the function is true, then we can
obtain a schedulability test by negating the function. One

could imagine that such a function could be obtained by
summing up all the computation by jobs of tasks in hp(iD)
and adding the normal and enforcement execution of τiD,1
and then compare with DiD. Unfortunately, doing so is very
complicated in our model. The reason is that in our model,
the amount of execution of a job depends on when the job
finishes (if the job finishes before it Zexpires, then it performs
no enforcement execution). Therefore, we will, instead,
express the schedule in (0) with variables and constraints
so that if and only if (0) is true, then the constraints are
satisfiable.

B. Representing Schedules
General idea. We will express the schedule in (0) with vari-

ables and constraints so that if and only if (0) is true, then the
constraints are satisfiable. We will present the constraints on a
form so that satisfiability can be checked with a Satisfiability
Modulo Theories (SMT) solver. Recall that (0) considers a
schedule in the time interval [0,DiD] and no jobs arrive before
time 0 and there is no execution after time DiD. Hence, we
only need to consider at most dDiD/Tje jobs of task τj . Recall
also from (0) that there is a single job of τiD. In addition, recall
that there are four types of scheduling events (arrival, finishing,
Zexpiring, Dexpiring) that can require a context switch (here,
we consider that the instant when a jobs normal execution
is killed and the enforcement execution arrives as a context
switch). Thus, in the schedule in the time interval [0,DiD],
there are at most 4 · (

∑
j∈hep(iD)dDiD/Tje) context switches.

We represent the time interval [0,DiD] as a set of time intervals
such that in each time interval, there is no context switch; we
refer to each such time interval as a position. We let npos
(meaning number of positions) be the sufficient number of
positions needed to represent the schedule based on the above
upper bound on the number of context switches; thus:

npos = 4 · (
∑

j∈hep(iD)

dDiD/Tje)− 1

Recall that the number of jobs of a task τj with j ∈ hp(iD)
is at most dDiD/Tje. All of these jobs must (as stated by (0))
arrive at time 0 or later. But we permit that some of these
jobs may arrive after DiD; these jobs, however, are not (from
(0)) allowed to perform any execution (they can have normal
execution time being zero). We will describe the schedule with
variables that are either real, integers, or Booleans. We will
use a real variable to indicate the time when an event occurs
(for example a job arrival). We will use integer variables to
indicate the position at which an event occurs. We will use
Boolean variables to indicate whether a certain event occurs
in a given position. Recall that there are five possible outcomes
for a job (skip, finish in normal mode and increment counter,
finish in normal mode and not increment counter, finish in
enforcement mode, kill at time of absolute deadline); we will
use variables to indicate whether a job has a certain outcome
and this outcome was caused by an event in a certain position.
We will let j be an index of a task in hep(iD). We will let q
be an index of a job; we will let p be the index of a position.

Variables. We now state the variables, their interpretation,
and their domains. The variables with the domain real numbers
are the following. tp denotes the time when position p starts.
Note that p in superscript does not mean exponentiation; the
superscript is an index. Aj,q denotes the arrival time of τj,q .

cj,q denotes the normal execution time of τj,q . ej,q denotes
the enforcement execution time of τj,q . execcpj,q denotes the
amount of normal execution that τj,q performs in position p.
execepj,q denotes the amount of enforcement execution that τj,q
performs in position p.

The variables with the domain integers are the following.
arrivesposj,q denote the position at which τj,q arrives. opj,q
denote the position at which τj,q finishes. (Intuitively, op
means that there is an outcome of a job and there is a position
at which this outcome is determined.) Zexpiresposj,q denote
the position at which τj,q Zexpires. Dexpiresposj,q denote
the position at which τj,q Dexpires. counterpj denotes the
counter of τj in the beginning of position p. The 1st position
is position 1; however, we let counter0j denote the value of the
counter of τj just before position 1 (that is, the initial value of
the counter). The variables with the domain Boolean are the
following. respCj,q indicates whether τj,q is a respectC job.
eligpj,q indicates whether τj,q is a eligible for execution (i.e.,
has arrived but not finished) in the beginning of position p.
xpj,q indicates whether τj,q executes in position p. oj,q is an
integer (in {1..5}) stating that outcome of job τj,q .

Constraints. We now state the constraints. Clearly, the start
time of a position must be no earlier than the start time of its
preceding position. Thus:

∀p ∈ {1..npos}.tp ≤ tp+1 (1)

Also, the 1st position starts at time 0. Thus:

t
1
= 0 (2)

Also, the counters must initially be non-negative:

∀j ∈ hep(iD).counter
0
j ≥ 0 (3)

A job arrives in the beginning of exactly one position. We
use arrivesposj,q to indicate the position at which the job
τj,q arrives. It is an integer. Clearly, it must be in the range
of position indices, that is, it must be in {1..npos + 1}. The
same applies to finishing times, Zexpiring, and Dexpiring as
well. We also know that each job has at least three distinct
positions. Therefore, by knowing the job index, we can obtain
tighter bound. Thus:

∀〈j, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}).
(3 · (q − 1) + 1 ≤ arrivesposj,q) ∧

(arrivesposj,q ≤ npos + 1− 2− 3 · (dDiD/Tje − q)) ∧
(3 · (q − 1) + 2 ≤ Zexpiresposj,q) ∧

(Zexpiresposj,q ≤ npos + 1− 1− 3 · (dDiD/Tje − q)) ∧
(3 · (q − 1) + 3 ≤ Dexpiresposj,q) ∧

(Dexpiresposj,q ≤ npos + 1− 3 · (dDiD/Tje − q)) ∧
(3 · (q − 1) + 1 ≤ opj,q) ∧

(opj,q ≤ npos + 1− 3 · (dDiD/Tje − q)) (4)

The time of arrival relates to the the position of arrival.
Ditto for other events. Hence:
∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos + 1}).

((arrivesposj,q = p)⇒ (Aj,q = t
p
)) ∧

((Zexpiresposj,q = p)⇒ (Aj,q + Zi = t
p
)) ∧

((Dexpiresposj,q = p)⇒ (Aj,q +Di = t
p
)) (5)

The above constraint gives us an ordering of arrivespos,
Zexpirespos, and Dexpirespos within a job. For tasks with
Dj < Tj , we also obtain that the Dexpirespos of one job
precedes the arrivespos of the next job. For the case that

Dj = Tj , however, it is necessary to state this explicitly. Thus,
we have the following constraint:

∀〈j, q〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje − 1}).
Dexpiresposj,q + 1 ≤ arrivesposj,q+1 (6)

There are also some bounds on execution times.
∀〈j, q〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}).

(cj,q ≥ 0) ∧ (respCj,q ⇒ (cj,q ≤ Cj)) ∧ (ej,q ≥ 0) ∧ (ej,q ≤ Ej) (7)

We also express minimum inter-arrival times as:
∀〈j, q〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje − 1}). Aj,q + Tj ≤ Aj,q+1 (8)

Our system model states that for RCj consecutive jobs of τj ,
at least one is a respectC job. Thus:

∀〈j, q〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje − (RCj − 1)}).
∨q′∈{q..q+RCj−1}respCj,q′ (9)

We will now express constraints on the schedule based on how
the scheduling is done. A job is eligible if it has arrived but
not yet finished. Also, since we use fixed-priority preemptive
scheduling, it holds that a job executes at a time if it is eligible
at this time and no higher-priority jobs are eligible at this time.
Thus:
∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).

(elig
p
j,q = ((arrivesposj,q ≤ p) ∧ (p < opj,q))) ∧

(x
p
j,q = (elig

p
j,q ∧ (∧j′∈hp(iD ∧q′∈{1..dDiD/Tj′ e}

(¬eligp
j′,q′)))) (10)

Note that in the constraint above, we are not referring to an
event but instead to the time interval of the position. Hence,
the case p = npos + 1 does not need to be considered. We
also express the amount of execution of a certain type (normal
versus enforcement) of a job in a given position as follows:
∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).

((x
p
j,q ∧ (p < Zexpiresposj,q))⇒ (execc

p
j,q = t

p+1 − tp)) ∧
(((¬xpj,q) ∧ (p < Zexpiresposj,q))⇒ (execc

p
j,q = 0)) ∧

((p ≥ Zexpiresposj,q)⇒ (execc
p
j,q = 0)) ∧

((x
p
j,q ∧ (p ≥ Zexpiresposj,q))⇒ (exece

p
j,q = t

p+1 − tp)) ∧
(((¬xpj,q) ∧ (p ≥ Zexpiresposj,q))⇒ (exece

p
j,q = 0)) ∧

((p < Zexpiresposj,q)⇒ (exece
p
j,q = 0)) (11)

Recall that oj,q indicates the outcome of job τj,q—there are
five outcomes. Also recall that opj,q indicates the position in
which an event occurs for which this outcome is determined.
Clearly, their ranges are as follows:

∀〈j, q〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}).
(1 ≤ oj,q) ∧ (oj,q ≤ 5) ∧ (1 ≤ opj,q) ∧ (opj,q ≤ npos + 1) (12)

Recall that outcome 1 means that the job is skipped. Hence:
∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).

((oj,q = 1) ∧ (opj,q = p))⇒

((arrivesposj,q ≤ p) ∧ (p ≤ Zexpiresposj,q) ∧ (
∑

p′∈{1..p−1}

execc
p′
j,q ≤ cj,q) ∧

(counter
p−1
j ≥ 1) ∧ (counter

p
j = counter

p−1
j − 1)) (13)

We will now describe the four other possible outcomes. For
the case p = 1, for o′ ∈ {2..5} it holds that ((oj,q = o′) ∧
(opj,q = p)) ⇒ false. We will now describe the constraints
for p ≥ 2. Recall that outcome 2 represents early finishing
and the counter is incremented. Thus:
∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {2..npos}).

((oj,q = 2) ∧ (opj,q = p))⇒
((arrivesposj,q < p) ∧ (p ≤ Zexpiresposj,q) ∧

x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execc
p′
j,q = cj,q) ∧

(counter
p−1
j < MAXCOUNTj) ∧ (counter

p
j = counter

p−1
j + 1)) (14)

Recall that outcome 3 represents early finishing and the
counter is not incremented. Thus:

∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {2..npos}).
((oj,q = 3) ∧ (opj,q = p))⇒

((arrivesposj,q < p) ∧ (p ≤ Zexpiresposj,q) ∧

x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execc
p′
j,q = cj,q) ∧

(counter
p−1
j ≥ MAXCOUNTj) ∧ (counter

p
j = counter

p−1
j)) (15)

Recall that outcome 4 represents late finishing. Thus:

∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {2..npos}).
((oj,q = 4) ∧ (opj,q = p))⇒

((Zexpiresposj,q < p) ∧ (p < Dexpiresposj,q) ∧

x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execc
p′
j,q < cj,q) ∧

(
∑

p′∈{1..p−1}

exece
p′
j,q = ej,q) ∧ (counter

p
j = counter

p−1
j)) (16)

Recall that outcome 5 represents finishing at deadline and the
job gets killed. Thus:

∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {2..npos}).
((oj,q = 5) ∧ (opj,q = p))⇒

((p = Dexpiresposj,q) ∧ (
∑

p′∈{1..p−1}

execc
p′
j,q < cj,q) ∧

(
∑

p′∈{1..p−1}

exece
p′
j,q < ej,q) ∧ (counter

p
j = counter

p−1
j − 1)) (17)

If no event that creates one of these outcomes occurs, then
the counter of a task should be unchanged. Thus:

∀〈j, q, p〉 (j ∈ hep(iD)) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos + 1}).
(¬(opj,q = p))⇒ (counter

p
j = counter

p−1
j) (18)

From (0), we obtain:

∀〈j, p〉 (j ∈ hp(iD)) ∧ (p ∈ {1..npos + 1}). counterpj ≥ 0 (19)

From (0) it follows that τiD,1 misses its deadline. Thus:

oiD,1 = 5 (20)

From (0) it follows that the initial value of the counter of τiD
is zero. Thus:

counter
0
iD = 0 (21)

Recall that (0) states that the processor is busy from time
zero until the absolute deadline of τiD,1. We express this as:

∀p ∈ {1..npos}.
(p < DexpiresposiD,1)⇒ (∨j∈hep(iD) ∨q∈{1..dDiD/Tje} x

p
j,q) (22)

From (0), we obtain that the processor is idle after this time.
Hence:

∀p ∈ {1..npos}. (p ≥ DexpiresposiD,1)⇒
(∧j∈hep(iD) ∧q∈{1..dDiD/Tje} ((execc

p
j,q = 0) ∧ (exece

p
j,q = 0))) (23)

Note that the two recently stated constraint are asymmetric;
one uses x and the other uses execc and exece. The reason for
this is our schedule representation assumes that a τj generates
exactly dDiD/Tje jobs but (0) states that τj generates at most
dDiD/Tje jobs; we deal with this (as mentioned earlier) by
allowing some of the jobs τj to have cj,q = 0 and ej,q = 0.
These jobs may have x set to true for positions greater than
or equal to DexpiresposiD,1 but then in such positions, their
execution is zero (because the position duration is zero).

Further, from (0) it follows that:
∀〈j, p〉 (j ∈ hep(iD)) ∧ (p ∈ {1..npos}).

counter
p
j ≤ min(dDiD/Tje,MAXCOUNTj) (24)

From (0) we also obtain the arrival time τiD. Hence:
(AiD,1 = 0) ∧ (arrivesposiD,1 = 1) (25)

From (0) we also obtain that the counter of τiD before its
deadline is zero. Hence:
∀p ∈ {1..npos + 1}. (p < DexpiresposiD,1)⇒ (counter

p
iD = 0) (26)

And after, it is -1. Hence:
∀p ∈ {1..npos + 1}. (p ≥ DexpiresposiD,1)⇒ (counter

p
iD = −1) (27)

We let cprsmtinstance(τ ,iD) denote a function that takes a
taskset τ and an integer iD as input and outputs an SMT
instance; this SMT instance is constructed as given in this
subsection. We let sat denote a function that takes an SMT
instance as input and outputs true if this SMT instance is
satisfiable; otherwise it outputs false.

C. Creating a schedulability test
Lemma IV.1. τ is not schedulable ⇒ (0)

Proof. Follows from the discussion in Section 4.1.

Lemma IV.2. (0) ⇒ (∃τiD ∈ τ sat(cprsmtinstance(τ, iD)))

Proof. Follows from the discussion in Section 4.2.

Lemma IV.3. τ is not schedulable ⇒ (∃τiD ∈
τ sat(cprsmtinstance(τ, iD)))

Proof. Follows from Lemma 1 and Lemma 2.

Lemma IV.4. τ is not schedulable ⇐ (∃τiD ∈
τ sat(cprsmtinstance(τ, iD)))

Proof. If the rhs is true, then ∃τiD ∈
τ sat(cprsmtinstance(τ, iD)). Then we can obtain a
solution to this SMT instance and this yields an assignment
R, a schedule sc, and a counter assignment ca such that R
is legal, ca is legal, and sc can be generated by R and in
which the counter of τiD is initially zero and the 1st job of
τiD misses its deadline. Hence, the lhs is true.

Lemma IV.5. τ is not schedulable ⇔ (∃τiD ∈
τ sat(cprsmtinstance(τ, iD)))

Proof. Follows from Lemma 3 and Lemma 4.

Theorem IV.6. τ is schedulable ⇔ (∀τiD ∈
τ ¬sat(cprsmtinstance(τ, iD)))

Proof. Follows from Lemma 5.

Based on Theorem 6, we can now create an algorithm for
schedulability testing as follows:

1) flag := true
2) for each τiD ∈ τ as long as flag is true do
3) if sat(cprsmtinstance(τ, iD)) then
4) flag := false
5) end if
6) end for
7) return flag

V. TOOL AND EVALUATION

We have implemented a tool that performs the schedulability
test presented in the previous section. This tool is a C program
that generates a file with the SMT instance and invokes Z3—a
state-of-the-art SMT solver. If the tool outputs unschedulable
for a taskset, then the tool produces a Gantt chart which shows
a schedule; this can be used to explain why the taskset is
unschedulable. Here, we present experimental results on this
tool.

Experimental setup. We generate tasksets using two
taskset-generation parameters targetutil, TMAXEXP as fol-
lows: |τ | = 2, Ti = 2random(0.0,log2 TMAXEXP), Di = Ti, Zi =
0.8 ·Di, Ci = 0.9 ·Zi, Ei = 0.1 ·Zi, RCi = 1, MAXCOUNTi
= 1. After all tasks have been assigned parameters this
way, we compute scalingfactor as follows scalingfactor :=
targetutil/(

∑
τj∈τ Cj/Tj). Then, for each task τj ∈ τ , we

multiply Cj and Ej by scalingfactor. Hence, for the resulting
taskset, it will holds that

∑
τj∈τ Cj/Tj = targetutil.

The domains of the taskset-generation parameters are as
follows: targetutil ∈ { 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8,
2.0 }, and TMAXEXP ∈ { 1, 2, 4, 8, 16, 32, 64, 128 }. We
explore all combinations of them; that is 90 combinations. For
each combination, we generate one taskset and measure the
time required for our tool to perform schedulability analysis.

Experimental results. We found that in our evaluation
(with tasksets with two tasks), it never took more than 54
seconds for our schedulability test to finish.

Case study. In our previous work [1], we have studied
enforcers, i.e., software components that monitor and can alter
the behavior of other software components. As part of this,
we built a multi-UAV system in our indoor drone-lab (an area
10x10m). In this system, there are two quad-copter UAVs and
there are two enforcers: one enforcer should ensure that the
distance between the quad-copters are separated by at least
a pre-specified number and the other enforcer should ensure
that the geographical location of a UAV is within a given
rectangle. Our system uses a logical enforcer to ensure the
aforementioned properties and this is achieved by using an
SMT solver at run-time to decide if an enforcer should override
the application controller. The execution time of the SMT
solver at run-time is very variable however. Thus, in some
cases (when the execution time is very large), we need to
terminate the SMT solver at run-time and then invoke another
safe action (pre-computed action that can be taken without
getting the result from the SMT solver). It can be seen that
this is a very good match to the task model that we present in
this paper (indeed, the task model in this paper was inspired by
the work in [1]). Therefore, create a model loosely inspired by
one of the computers in the multi-UAV system in [1] using the
task model in this paper. Table II shows it. We apply our new
schedulability test on this taskset and find that it is schedulable.

VI. CONCLUSIONS

We presented a new model that describes the current state of
the physical environment in terms of how tolerant it is to dis-

Task prio T D Z C E MAXCOUNT RC
τ1 2 20 20 10 9 1 2 2
τ2 1 25 25 12 11 1 2 2

TABLE II
A MODEL OF ONE OF THE COMPUTERS IN THE MULTI-UAV SYSTEM IN [1].

ruption of the software system and how the scheduling impacts
this tolerance; we call this model Cyber-Physical Resilience
(CPR). For this model, we presented an exact schedulability
test and a tool that implements this schedulability test. We
evaluated it on randomly-generated tasksets and on a model
of a multi-UAV system from [1].

ACKNOWLEDGMENT

Copyright 2018 IEEE. All Rights Reserved. This material is
based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development
center. DM18-0522

REFERENCES

[1] B. Andersson, S. Chaki, and D. de Niz. Combining symbolic runtime
enforcers for cyber-physical systems. In RV, 2017.

[2] A. Anta and P. Tabuada. On the benefits of relaxing the periodicity
assumption for networked control systems over CAN. In RTSS, 2009.

[3] K.E. Årzén. A simple event-based PID controller. In IFAC World
Congress, 1999.

[4] G. C. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive tasks: Model,
analysis, and design issues. In DATE, 2014.

[5] M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for
enhancing aperiodic responsiveness. In RTSS, 1997.

[6] M. Clark, X. Koutsoukos, R. Kumar, I. Lee, G. Pappas, L. Pike, J. Porter,
and O. Sokolsky. A study on run time assurance for complex cyber
physical systems. In Technical Report, Air Force Research Laboratory,
2013.

[7] R. I. Davis, T. Feld, V. Pollex, and F. Slomka. Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling. In RTAS, 2014.

[8] J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems. In
ICCPS, 2012.

[9] P. Kumar and L. Thiele. Quantifying the effect of rare timing events
with settling-time and overshoot. In RTSS, 2012.

[10] C. Lee, C.-S. Shieh, and L. Sha. Online QoS optimization using service
classes in surveillance radar systems. In JRTS, 2004.

[11] M. Lemmon, T. Chantem, X. Hu, and M. Zyskowski. On self-triggered
full information H-infinity controllers. In Hybrid Systems: Computation
and Control, 2007.

[12] W. Lucia, B. Sinopoli, and G. Franzè. A set-theoretic approach for
secure and resilient control of cyber-physical systems subject to false
data injection attacks. In SOSCYPS, 2016.

[13] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability
in real-time control systems. In RTSS, 1996.

[14] L. Sha. Using simplicity to control complexity. IEEE Software, 2001.
[15] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic

scheduling theory: A framework for developing real-time systems. In
proceedings of the IEEE, 1994.

[16] M. Velasco, J. Fuertes, and P. Martı́. The self triggered task model for
real-time control systems. In RTSS-WIP, 2003.

[17] M. Velasco, P. Martı́, and E. Bini. Control-driven tasks: Modeling and
analysis. In RTSS, 2009.

